

X-34 Demo Scope

- X-34 model covers parts of the vehicle main propulsion system, during the captive carry phase of the flight
 - liquid oxygen (LOX) tank
 - the pressurization subsystem
 - the pneumatics subsystem
 - all sensors available in vehicle telemetry
- Does not include the kerosene propellant tank or the release, burn, and landing phases of the flight

The Liquid Oxygen tank

- Two components to the LOX tank, forward and aft
- Three valves to control pressurization, vent relief, and engine feed lines

The pressurization line

- Begins with tank containing gaseous He supply
- Two regulators on line provide redundancy and interesting diagnosis cases
- Solenoid pressurization valve regulates flow of He into LOX tank

- Similar to the pressurization line, begins with He tank and two regulators
- Solenoid valve actuates a large pneumatics valve
- Combination of regulators, solenoid valve, and pneumatic valve provide for interesting diagnosis

The full X-34 Livingstone model

Data types for X-34 model

feedLineTemperature.loxTemp.upperBound = belowThreshold

This system of threshold values and ranges is common to almost all datatypes in model

Monitors decide threshold values

Monitor

LoxTemp upperBound threshold = 350 °R

feedLineTemperature.loxTemp.upperBound = belowThreshold

Thresholds on derivatives

- LOX tank state defined by the states of the three valves connecting to it
- Pressure derivative used to infer the state

Derivative in pressurizationRate range ⇒
pressurization valve open
Derivative in heatingRate range ⇒
all valves closed
Derivative in bleedRate range ⇒
engine outlet valve open
Derivative in ventingRate range ⇒
vent relief valve open

Example of X-34 diagnosis

Ifitial observations:

Command: Open solenoid valve Solenoid valve opened

Pressure value of Regulator 1

Diagnosis: 3 candidates

- (1) Vent relief valve stuck
- (2) Regulator 1 low Pressure sensor bad
- (3) Regulator 2 low Pressure sensor bad

Probability of candidate determines order

X-34 Model summary

- Livingstone model contains a subset of the components of the X-34 main propulsion system
- Developed in the Stanley modeling environment
- Planned future work:
 - Expanding scope of model
- Possible future work
 - Language improvements
 - Unobservable commands

space:

Overview

- What does Livingstone do?
- General Diagnosis example
- X-34 Scope and Description
- X-34 Diagnosis example
- Issues / Limitations

What does Livingstone do?

Livingstone is a diagnostic software tool. It tracks the state of a system based on the commands, the observations, and a model of the system.

- Livingstone is <u>not</u> a spacecraft controller, it advises a controller about the state of the system
- Created to be fast and memory-efficient by abstracting the system into a discrete domain
- Consistency-based reasoning allows Livingstone to do a diagnosis even if not all observations are fully known

What is a Livingstone model?

- A Livingstone model describes a set of states for a system, the possible transitions between states, and the expected output based on the state.
- States are classified as "ok" and "failure"
- All quantities are discrete values

What is a Livingstone diagnosis?

- A Livingstone diagnosis returns the set of states of a system that are consistent with the commands issued and the observed output.
- Takes into account the desired action via the commands
- Does not need all outputs of a system to do a diagnosis
- Probability of failure states is taken into account

Strategies for a "good" Livingstone model

- Component-based
- Predictive model

• Safety, not completeness

Example: House light model

Observation: light on/off

House light example (2)

Model assumptions

- Modeled the main components of the system, but not all
- Some sensors do not have fault modes, will probably be added to next release

Failure of the Vent Relief Valve

Timing issues

- Often, a new command will be issued while we are still waiting for the results of the previous command to be issued. Have to deal with as a special case in the interface to Livingstone.
- Howard, are you going to talk about this?

Some issues

• Livingstone requires the modeler to abstract the system into a set of discrete states and the transitions between states. This works well for a valve model...

Some issues (3)

- Livingstone expects to have full knowledge of commands sent
- Commands for some components not in the telemetry stream visible to Livingstone

Workaround in place, issue could drive future Livingstone research

Some issues (2)

...but not as well for components with storage terms, like a tank of liquid.

